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Motivations: healthcare
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Tasks
@ Biomedical signal processing via modeling and machine learning
@ ECG heartbeat classification for arrhythmia detection
Expectations
@ Accuracy, efficiency, explainability

Gergd Bognar Model-based machine learning in signal processing



Motivations
ooe

Motivations: telecommunication
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Tasks
@ Physical layer transmission in wireless communication
e Data estimation in UW-OFDM systems
Expectations
@ Accuracy, efficiency, theoretically optimal solution
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Model-based machine learning

Advantages
Bridge between model-based direct methods and machine learning
Domain knowledge incorporation

°
°

@ Model-based representation learning

@ Compact, low-dimensional, optimized representation
°

Interpretable parameters, explainable representation

Challenges
@ Why? — modeling vs. learning
o What? — model selection, parametrization, mathematical description

@ How? — specialized architecture development
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Deep Unfolding
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Least squares problems

Least squares data estimation
@ General modeling problem:
=T =1(0), lz — 2|3 —>mein

0: linear or nonlinear system parameters

Gradient-based optimization
o Gradient descent iteration:
Ort = 9% _ 5. Vy|lz — 2|3
@ Projected gradient descent:
OFD =TI (6™ — & - Vg — 2|3)
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Deep unfolding

Concept
@ Projected gradient descent:
OFD =TI (0™ — & - Vy|z — 2|3)
@ Unfolding iterations to NN layers
orD = MLP (0% — 5 - Vy||z — 2]|3)
@ Representation learning, combination with dense layers

Deep unfolding layer structure
o 9w J-[ITER |- MLP |+ g0 |-+
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Application: Healthcare

Task
@ ECG heartbeat classification on MIT-BIH Arrhythmia Database (PhysioNet)
@ 5 AAMI classes, inter-patient paradigm (DS1 and DS2)!

'P. de Chazal, M. O’'Dwyer, R. B. Reilly: Automatic classification of heartbeats using ECG
morphology and heartbeat interval features, IEEE Trans Biomed Eng, 2004
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Variable projections?® (VP, VarPro)

Separable non-linear least squares
@ Parametric function system: ®,(#) € R™, #: non-linear system parameters

@ Non-linear modeling problem:
n

rrd=Y a®0) =20  r(c,0) =z —00)c|3 - min
k=1 ©
@ VP functional, Hilbert space approximation:
ro(0) := ||z — ®(0)DT(0)x|5 — min, c=o"(0)x
d*(6): Moore-Penrose pseudoinverse of matrix ®(6)
e Gradient-based optimization possible (gradient descent, Gauss—Newton,

Levenberg—Marquardt, . ..)

2G. H. Golub, V. Pereyra: The Differentiation of Pseudo-Inverses and Nonlinear Least
Squares Problems Whose Variables Separate, SIAM Journal on Numerical Analysis, 1973
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VPNet: Variable Projection Networks®
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@ Model-based neural network with VP representation learning
@ VP layers: VP projections for feature learning:
z— fOP(z) =dH @)z =c¢  (classification), or
z— fOP)(z) = ®(0)dF(A)z =%  (regression)
e Different variants: autoencoder, spiking NN, SVM, ...

3P. Kovécs, G. Bognar, C. Huber, M. Huemer: VPNet: Variable Projection Networks,
International Journal of Neural Systems, 2022
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Original VPNet
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Deep unfolding variable projection network

@ Motivation: expand VPNet to learn to learn (sic!) system parameters 0

@ Unfolding the VP gradient iteration:
o+ .= MLP (eUf) +26 (z — o(0)2* (0)x)" D@(G)@*(G)x)

@ Exact gradient (and gradient of gradient) computation for numerical stability
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ECG classification results

Method Description Accuracy
de Chazal et al. Waveform + RR LD 86.1%
Llamado et al.  Waveform + wavelet + RR LD 93%
Ye et al. Wavelet + ICA + RR SVM  86%
Dézsa et al. Hermite VP (LC + NLP + PRD) + RR SVM  93.6%
Bognar et al. Rational VP (LC 4+ NLP) + RR SVM  94.5%
Hermite VPNet 91.9%
Hermite VPNet + RR 93.2%
Bognar et al.* Hermite VP Unfold 93.5%
Hermite VP Unfold + RR 94.7%

4G. Bognar, P. Kovacs: ECG Classification with Deep Unfolding Variable Projection
Network, Computing in Cardiology Conference, 2024

Gergd Bognar Model-based machine learning in signal processing



Application: Telecommunication
000000

Outline

© Application: Telecommunication

Gergd Bognar Model-based machine learning in signal processing



Application: Telecommunication
0000000

Application: Telecommunication
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Task

@ Data estimation in UW-OFDM systems
e Multipath, additive white Gaussian noise channel (IEEE 802.11a)
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Unique Word OFDM?®

Transmit sequence in time domain:

‘ Ny ‘ N ‘ N
e
System model: i
y = Egd +w
y € CV: received vector H

d € SM¢ € CMa: data symbol vector (S: modulation alphabet)
H e C¥*V: channel frequency response matrix (IEEE 802.11a)
G € CV*Na: UW-OFDM generator matrix

e w ~ CN(0,No2I)

5M. Huemer, C. Hofbauer, and J. B. Huber: The Potential of Unique Words in OFDM,
15th International OFDM Workshop, 2010
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Deep unfolding data estimation

Deep unfolding data estimation
@ Motivation: data-driven asymptotically optimal estimator
o Estimation: y =Hd+w, (Hy) —d
@ Unfolding the gradient iteration:
A+ .— MLP <a<k> + o (HTy - HTHa(k)>)

DetNet layer structure® (simplified)

-+ d® |~ ITER [~ MLP |—{ gt |-~

6N. Samuel, T. Diskin, A. Wiesel: Learning to Detect, IEEE Trans. Sign. Proc., 2019
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NN-based data estimation for UW-OFDM’
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Figure: Simulation framework for NN-based data estimation

7S. Baumgartner, G. Bognar, O. Lang, and M. Huemer: Neural Network Approaches for
Data Estimation in Unique Word OFDM Systems, IEEE Trans. Vehicular Technology, 2024
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NN-optimal UW-OFDM?®

End-to-end NN
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Figure: NN-optimal end-to-end framework for data estimation

8G. Bognar, S. Baumgartner, O. Lang, and M. Huemer: Neural Network Optimal
UW-OFDM, Asilomar Conference, 2021
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NN-optimal data estimation results
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Summary

Model-based NN architectures based on deep unfolding
Close to optimal data estimation

Compact, low-dimensional representation learning

Explainable representation, interpretable parameters

Thank you for your attention!
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