Modellalapú gépi tanulás a jelfeldolgozásban

Bognár Gergő

ELTE IK Numerikus Analízis Tanszék

Analízis és Alkalmazásai Workshop, 2024

Motivations 000	Model-based ML 0000	Deep Unfolding	Application: Healthcare	Application: Telecommunication	Summary 00
Outline					

- 2 Model-based machine learning
- Obeep Unfolding
- Application: Healthcare
- 5 Application: Telecommunication

Motivations ●00	Model-based ML 0000	Deep Unfolding 000	Application: Healthcare	Application: Telecommunication	Summary 00
Outline					

- 2 Model-based machine learning
- 3 Deep Unfolding
- Application: Healthcare
- 5 Application: Telecommunication
- 6 Summary

Motivations ○●○	Model-based ML 0000	Deep Unfolding	Application: Healthcare	Application: Telecommunication	Summary 00
Motivat	ions: heal	thcare			

Tasks

- Biomedical signal processing via modeling and machine learning
- ECG heartbeat classification for arrhythmia detection

Expectations

• Accuracy, efficiency, explainability

Tasks

- Physical layer transmission in wireless communication
- Data estimation in UW-OFDM systems

Expectations

• Accuracy, efficiency, theoretically optimal solution

Motivations 000	Model-based ML ●000	Deep Unfolding	Application: Healthcare	Application: Telecommunication	Summary 00
Outline					

- 2 Model-based machine learning
- 3 Deep Unfolding
- Application: Healthcare
- 5 Application: Telecommunication

Model-based machine learning

Advantages

- Bridge between model-based direct methods and machine learning
- Domain knowledge incorporation
- Model-based representation learning
- Compact, low-dimensional, optimized representation
- Interpretable parameters, explainable representation

Challenges

- Why? modeling vs. learning
- What? model selection, parametrization, mathematical description
- *How?* specialized architecture development

Motivations 000	Model-based ML 0000	Deep Unfolding ●00	Application: Healthcare	Application: Telecommunication	Summary 00
Outline					

2 Model-based machine learning

Oeep Unfolding

- Application: Healthcare
- 5 Application: Telecommunication

Least squares data estimation

• General modeling problem:

$$x \approx \hat{x} = \hat{x}(\theta), \qquad \|x - \hat{x}\|_2^2 \to \min_{\theta}$$

 θ : linear or nonlinear system parameters

Gradient-based optimization

• Gradient descent iteration:

$$\theta^{(k+1)} := \theta^{(k)} - \delta \cdot \nabla_{\theta} \|x - \hat{x}\|_2^2$$

• Projected gradient descent:

$$\theta^{(k+1)} := \Pi \left(\theta^{(k)} - \delta \cdot \nabla_{\theta} \| x - \hat{x} \|_2^2 \right)$$

Motivations	Model-based ML 0000	Deep Unfolding ○○●	Application: Healthcare	Application: Telecommunication	Summary 00
Deep u	Infolding				

Concept

• Projected gradient descent:

$$\theta^{(k+1)} := \Pi \left(\theta^{(k)} - \delta \cdot \nabla_{\theta} \| x - \hat{x} \|_2^2 \right)$$

Unfolding iterations to NN layers

$$\theta^{(k+1)} := \mathsf{MLP}\left(\theta^{(k)} - \delta \cdot \nabla_{\theta} \|x - \hat{x}\|_{2}^{2}\right)$$

• Representation learning, combination with dense layers

Deep unfolding layer structure

Motivations	Model-based ML	Deep Unfolding	Application: Healthcare	Application: Telecommunication	Summary
000	0000	000	●00000		00
Outline					

- 2 Model-based machine learning
- 3 Deep Unfolding
- 4 Application: Healthcare
- 5 Application: Telecommunication

Motivations 000	Model-based ML 0000	Deep Unfolding	Application: Healthcare	Application: Telecommunication	Summary 00
Applica	tion: Healt	thcare			

Task

- ECG heartbeat classification on MIT-BIH Arrhythmia Database (PhysioNet)
- 5 AAMI classes, inter-patient paradigm (DS1 and DS2)¹

¹P. de Chazal, M. O'Dwyer, R. B. Reilly: Automatic classification of heartbeats using ECG morphology and heartbeat interval features, IEEE Trans Biomed Eng, 2004

 Motivations
 Model-based ML
 Deep Unfolding
 Application: Healthcare
 Application: Telecommunication
 Summary of the second seco

Separable non-linear least squares

- Parametric function system: $\Phi_k(\theta) \in \mathbb{R}^m$, θ : non-linear system parameters
- Non-linear modeling problem:

$$x \approx \hat{x} = \sum_{k=1}^{n} c_k \Phi_k(\theta) = \Phi(\theta)c, \qquad r(c,\theta) := \|x - \Phi(\theta)c\|_2^2 \to \min_{c,\theta}$$

• VP functional, Hilbert space approximation:

$$r_2(\theta) := \|x - \Phi(\theta)\Phi^+(\theta)x\|_2^2 \to \min_{\theta}, \qquad c = \Phi^+(\theta)x$$

 $\Phi^+(\theta):$ Moore–Penrose pseudoinverse of matrix $\Phi(\theta)$

• Gradient-based optimization possible (gradient descent, Gauss–Newton, Levenberg–Marquardt, ...)

 $^2 G.~H.$ Golub, V. Pereyra: The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate, SIAM Journal on Numerical Analysis, 1973

Motivations Model-based ML Deep Unfolding Application: Healthcare Application: Telecommunication Summary 0000000 V/DNot: Variable Projection Naturates³

VPNet: Variable Projection Networks³

- Model-based neural network with VP representation learning
- VP layers: VP projections for feature learning:

$$\begin{aligned} x \mapsto f^{(\mathsf{vp})}(x) &= \Phi^+(\theta)x = c \qquad \text{(classification), or} \\ x \mapsto f^{(\mathsf{vp})}(x) &= \Phi(\theta)\Phi^+(\theta)x = \hat{x} \qquad \text{(regression)} \end{aligned}$$

• Different variants: autoencoder, spiking NN, SVM, ...

³P. Kovács, G. Bognár, C. Huber, M. Huemer: VPNet: Variable Projection Networks, International Journal of Neural Systems, 2022

x VP layers + Dense layers +

Deep unfolding variable projection network

- Motivation: expand VPNet to learn to learn (sic!) system parameters θ
- Unfolding the VP gradient iteration:

$$\theta^{(k+1)} := \mathsf{MLP}\left(\theta^{(k)} + 2\delta\left(x - \Phi(\theta)\Phi^+(\theta)x\right)^T \mathbf{D}\Phi(\theta)\Phi^+(\theta)x\right)$$

y

• Exact gradient (and gradient of gradient) computation for numerical stability

Motivations 000	Model-based ML 0000	Deep Unfolding	Application: Healthcare 00000●	Application: Telecommunication	Summary 00		
ECC classification results							

Method	Description		Accuracy
de Chazal et al.	Waveform $+ RR$	LD	86.1%
Llamado et al.	Waveform + wavelet + RR	LD	93%
Ye et al.	Wavelet + ICA + RR	SVM	86%
Dózsa et al.	Hermite VP (LC + NLP + PRD) + RR	SVM	93.6%
Bognár et al.	Rational VP (LC + NLP) + RR	SVM	94.5%
	Hermite VPNet		91.9%
	$Hermite\ VPNet\ +\ RR$		93.2%
Bognár et al. ⁴	Hermite VP Unfold		93.5%
	Hermite VP Unfold $+$ RR		94.7%

 $^4 G.$ Bognár, P. Kovács: ECG Classification with Deep Unfolding Variable Projection Network, Computing in Cardiology Conference, 2024

Motivations 000	Model-based ML 0000	Deep Unfolding 000	Application: Healthcare	Application: Telecommunication	Summary 00
Outline					

- 2 Model-based machine learning
- 3 Deep Unfolding
- Application: Healthcare
- 5 Application: Telecommunication

Task

- Data estimation in UW-OFDM systems
- Multipath, additive white Gaussian noise channel (IEEE 802.11a)

Transmit sequence in time domain:

System model:

$$\mathbf{y} = \underbrace{\widetilde{\mathbf{H}}\mathbf{G}}_{\mathbf{H}}\mathbf{d} + \mathbf{w}$$

- $\mathbf{y} \in \mathbb{C}^N$: received vector
- $\mathbf{d} \in \mathbb{S}^{N_d} \subset \mathbb{C}^{N_d}$: data symbol vector (\mathbb{S} : modulation alphabet)
- $ilde{\mathbf{H}} \in \mathbb{C}^{N imes N}$: channel frequency response matrix (IEEE 802.11a)
- $\mathbf{G} \in \mathbb{C}^{N imes N_d}$: UW-OFDM generator matrix
- $\mathbf{w} \sim \mathcal{CN}(\mathbf{0}, N\sigma_n^2 \mathbf{I})$

⁵M. Huemer, C. Hofbauer, and J. B. Huber: The Potential of Unique Words in OFDM, 15th International OFDM Workshop, 2010

 Motivations
 Model-based ML
 Deep Unfolding
 Application: Healthcare
 Application: Telecommunication
 Summary oc

 OOO
 OOO
 OOO
 OOO
 OOO
 OOO
 OOO

Deep unfolding data estimation

Deep unfolding data estimation

• Motivation: data-driven asymptotically optimal estimator

 \mathbf{H}, \mathbf{y}

ITFR

- $\bullet \ \, {\sf Estimation}: \ \, {\bf y} = {\bf H} {\bf d} + {\bf w}, \quad ({\bf H}, {\bf y}) \longrightarrow {\bf \hat d}$
- Unfolding the gradient iteration:

$$\mathbf{\hat{d}}^{(k+1)} := \mathsf{MLP}\left(\mathbf{\hat{d}}^{(k)} + \delta_k \left(\mathbf{H}^T\mathbf{y} - \mathbf{H}^T\mathbf{H}\mathbf{\hat{d}}^{(k)}
ight)
ight)$$

MIP

 $\hat{\mathbf{d}}^{(k+1)}$

DetNet layer structure⁶ (simplified)

 $\hat{\mathbf{d}}^{(k)}$

⁶N. Samuel, T. Diskin, A. Wiesel: Learning to Detect, IEEE Trans. Sign. Proc., 2019 Gergő Bognár Model-based machine learning in signal processing

Figure: Simulation framework for NN-based data estimation

⁷S. Baumgartner, G. Bognár, O. Lang, and M. Huemer: Neural Network Approaches for Data Estimation in Unique Word OFDM Systems, IEEE Trans. Vehicular Technology, 2024

Figure: NN-optimal end-to-end framework for data estimation

⁸G. Bognár, S. Baumgartner, O. Lang, and M. Huemer: Neural Network Optimal UW-OFDM, Asilomar Conference, 2021

 Motivations
 Model-based ML
 Deep Unfolding
 Application: Healthcare
 Application: Telecommunication
 Summary

 000
 000000●
 000000●
 000000●
 000000●
 000000●

NN-optimal data estimation results

Gergő Bognár Model-based machine learning in signal processing

Motivations 000	Model-based ML 0000	Deep Unfolding 000	Application: Healthcare	Application: Telecommunication	Summary ●0
Outline					

- 2 Model-based machine learning
- 3 Deep Unfolding
- Application: Healthcare
- 5 Application: Telecommunication

Motivations 000	Model-based ML 0000	Deep Unfolding 000	Application: Healthcare	Application: Telecommunication	Summary ○●
Summary					

- Model-based NN architectures based on deep unfolding
- Close to optimal data estimation
- Compact, low-dimensional representation learning
- Explainable representation, interpretable parameters

Thank you for your attention!