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Happy Birthday to
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General introduction

Denote by P the set of the positive integers, N := P ∪ {0}.

Dyadic group

Denote by Z2 := {0, 1} the additive group of integers modulo 2. Define
the dyadic group G as the complete direct product of the groups Z2 with
the product of the discrete topologies of Z2‘s. The group operation is the
modulo 2 addition.

The elements of G are represented by sequences

x := (x0, x1, . . . , xn, . . .) , where xn ∈ Z2 and n ∈ N.

Dyadic intervals

I0 (x) := G ,

In(x) := {y ∈ G | y0 = x0, . . . , yn−1 = xn−1} (x ∈ G , n ∈ P).
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General introduction

Measure

The direct product µ of the measures

µn ({j}) := 1/2, where j ∈ Z2

is the Haar measure on G with µ (G ) = 1.

Lp spaces

Let Lp(G ) denote the usual Lebesgue spaces on G with corresponding
norms ∥.∥p, where 1 ≤ p < ∞ and C (G ) denote the space of continuous
functions on G with the norm ∥f ∥∞ := sup{|f (x)| : x ∈ G}.
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General introduction

Lp(G ) modulus of continuity

ωp(f , δ) := sup
|t|<δ

∥f (.+ t)− f (.)∥p ,

for f ∈ Lp(G ), where δ > 0 with the notation

|x | :=
∞∑
i=0

xi
2i+1

for all x ∈ G .

In the case f ∈ C (G ) we change p by ∞.
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Walsh-Paley system

Rademacher functions

rk (x) := (−1)xk ,

so rk (x) : G → {−1, 1}, where x ∈ G , k ∈ N

Walsh-Paley system

w := {wn : n ∈ N} on G

wn(x) :=
∞∏
k=0

rnkk (x) (n ∈ N) .

The Walsh-Paley system is orthonormal and complete in L2 (G ).
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Walsh-Fourier analysis

Some of the usual definitions of the Walsh-Fourier analysis.

Walsh-Fourier-coefficient

f̂ (n) :=

∫
G
f w̄ndµ

Walsh-Fourier series

Sn(f ) :=
n−1∑
k=0

f̂ (k)wk

I. Blahota and D. Nagy Approximation by matrix transform means . . . 18 Oct, 2024 6 / 20



Walsh-Fourier analysis

Some of the usual definitions of the Walsh-Fourier analysis.

Walsh-Fourier-coefficient

f̂ (n) :=

∫
G
f w̄ndµ

Walsh-Fourier series

Sn(f ) :=
n−1∑
k=0

f̂ (k)wk

I. Blahota and D. Nagy Approximation by matrix transform means . . . 18 Oct, 2024 6 / 20



Walsh-Fourier analysis

Some of the usual definitions of the Walsh-Fourier analysis.

Walsh-Fourier-coefficient

f̂ (n) :=

∫
G
f w̄ndµ

Walsh-Fourier series

Sn(f ) :=
n−1∑
k=0

f̂ (k)wk

I. Blahota and D. Nagy Approximation by matrix transform means . . . 18 Oct, 2024 6 / 20



Walsh-Fourier analysis

Walsh-Fejér mean

σn(f ) :=
1

n

n∑
k=1

Sk(f )

Walsh-Dirichlet kernels

Dn :=
n−1∑
k=0

wk ,

where n ∈ P, and D0 := 0.

Fejér kernels

Kn :=
1

n

n∑
k=1

Dk .
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Walsh-Fourier analysis

Nörlund mean of the Walsh-Fourier series

Let {qk : k ∈ N} be a sequence of non-negative numbers.

tn(f ; x) :=
1

Qn

n∑
k=1

qn−kSk(f ; x),

where Qn :=
∑n−1

k=0 qk (n ∈ P), q0 > 0 and limn→∞Qn = ∞.
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Matrix transform

Let T := (ti ,j)
∞
i ,j=1 be a infinite upper triangular matrix of numbers.

Matrix transform mean

σT
n (f ; x) :=

n∑
k=1

tk,nSk(f ; x),

{tk,n : 1 ≤ k ≤ n, k ∈ P} (n ∈ P).

Matrix transform kernel

KT
n (x) :=

n∑
k=1

tk,nDk(x).

It is easily seen that σT
n (f ; x) =

∫
G f (u)KT

n (x − u)dµ(u).
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Historical overview

In classical book of Schipp, Wade, Simon and Pál [7], on p. 191. we can
read inequality

∥σ2s (f )− f ∥X ≤ ω(X )
(
f ; 2−s

)
+

s−1∑
k=0

2k−sω(X )
(
f ; 2−k

)
,

where X is a homogeneous Banach space (for example any Lp space,
where 1 ≤ p < ∞ and the space of continuous functions C ).
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Historical overview

Móricz and Siddiqi [5] (1992)

Let f ∈ Lp(G ), 1 ≤ p ≤ ∞ and let {qk : k ∈ N} be a sequence of

nonnegative numbers such that nγ−1

Qγ
n

∑n−1
k=0 q

γ
k = O(1) for some 1 < γ ≤ 2.

a) If qk is non-decreasing, then

∥tn(f )− f ∥p ≤ 5

2Qn

|n|−1∑
j=0

2jqn−2jωp

(
f ,

1

2j

)
+ cωp

(
f ,

1

2|n|

)
.

b) If qk is non-increasing, then

∥tn(f )− f ∥p ≤ 5

2Qn

|n|−1∑
j=0

(Qn−2j−1−Qn−2j+1−1)ωp

(
f ,

1

2j

)
+cωp

(
f ,

1

2|n|

)
.
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Historical overview

Blahota and K. Nagy [3] (2018)

Let f ∈ Lp(G ), 1 ≤ p ≤ ∞. For every n ∈ N, {tk,n : 1 ≤ k ≤ n} be a finite
sequence of non-negative numbers such that

∑n
k=1 tk,n = 1 is satisfied.

a) If the finite sequence {tk,n : 1 ≤ k ≤ n} is non-decreasing for a fixed n
and the condition tn,n = O

(
1
n

)
is satisfied, then

∥∥∥σT
n (f )− f

∥∥∥
p
≤ 5

|n|−1∑
j=0

2j t2j+1−1,nωp

(
f ,

1

2j

)
+ cωp

(
f ,

1

2|n|

)
.

b) If the finite sequence {tk,n : 1 ≤ k ≤ n} is non-increasing for a fixed n,
then

∥∥∥σT
n (f )− f

∥∥∥
p
≤ 5

|n|−1∑
j=0

2j t2j ,nωp

(
f ,

1

2j

)
+ cωp

(
f ,

1

2|n|

)
.
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Historical overview - motivation

Areshidze and Tephnadze [1] (2024)

Let f ∈ Lp(G ), 1 ≤ p < ∞ and let tn be a regular Nörlund mean
generated by non-decreasing sequence {qk : k ∈ N}. Then

∥tn(f )− f ∥p ≤ 18

|n|−1∑
j=0

2j
qn−2j

Qn
ωp

(
f ,

1

2j

)
+ 12ωp

(
f ,

1

2|n|

)
.
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Auxiliary results

Paley’s lemma

D2n(x) =

{
0, if x ̸∈ In(0),

2n, if x ∈ In(0).

The improved version of Yano’s lemma:

Toledo [8] (2018)

sup
n∈P

∥Kn∥1 =
17

15
.
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Auxiliary results

Gát [4] (1998)

Let n, t ∈ N and t < n. Then

K2n(x) =


2t−1, if x ∈ It(0)\It+1(0), x − et ∈ In(0),
2n+1
2 , if x ∈ In(0),

0, otherwise.

Persson, Tephnadze and Weisz [6] (2022)

Let n ∈ N and f ∈ Lp(G ) for some 1 ≤ p < ∞. Then we have inequality

∥σn(f )− f ∥p ≤ 3

|n|∑
s=0

2s

2|n|
ωp

(
f ,

1

2s

)
.
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New results

Blahota and D. Nagy [2] (2024)

Let f ∈ Lp(G ), 1 ≤ p ≤ ∞. For every n ∈ N, {tk,n : 1 ≤ k ≤ n} be a
finite sequence of non-negative numbers such that

n∑
k=1

tk,n = 1

is satisfied. If the finite sequence {tk,n : 1 ≤ k ≤ n} is non-increasing for a
fixed n, then we have

∥∥∥σT
n (f )− f

∥∥∥
p
≤ 31

15

|n|−1∑
k=0

2kt2k ,nωp

(
f ,

1

2j

)
+

47

30
ωp

(
f ,

1

2|n|

)
.
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New results

Blahota and D. Nagy [2] (2024)

Let the finite sequence {tk,2n : 1 ≤ k ≤ 2n} of non-negative numbers be
non-decreasing for all n ∈ N and

2n∑
k=1

tk,2n = 1.

Then for any f ∈ Lp(G ) for some 1 ≤ p < ∞, we have the following
inequality

∥∥∥σT
2n(f )− f

∥∥∥
p
≤

n−1∑
s=0

2s

2n
ωp

(
f ,

1

2s

)
+ 3

n−1∑
s=0

(n − s)2st2n−2s+1,2nωp

(
f ,

1

2s

)
+

(
2 +

1

2n

)
ωp

(
f ,

1

2n

)
.
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New results

Blahota and D. Nagy [2] (2024)

For every n ∈ P, let the finite sequence {tk,n : 1 ≤ k ≤ n} of non-negative
numbers be non-decreasing for all n and we suppose that

n∑
k=1

tk,n = 1 and tn,n = O

(
1

n

)
.

Then for any f ∈ Lp(G ) for some 1 ≤ p < ∞, we have the following
inequality

∥∥∥σT
n (f )− f

∥∥∥
p
≤ c

|n|∑
k=0

2k

2|n|
ωp

(
1

2k
, f

)
.
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Thank you for your attention!
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